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We consider the classical problem of running a decentralized and trustless auction, using a smart contract, on
a programmable blockchain such as Ethereum. In our setting, there are 𝐿 bidders who have paid a deposit to
join the protocol. Each bidder 𝑀 can make a bid 1 → 𝑁𝐿 → 𝑂 and our goal is to !nd the highest bid (max𝐿 𝑁𝐿 )
and its corresponding bidder (argmax𝐿 𝑁𝐿 ) in a publicly-veri!able manner. Each bidder must be unaware of
others’ bids when making their own and should not be able to change their bid after having committed to
it. Additionally, and most importantly, we aim to provide privacy to the losing bidders, ensuring that their
bids remain undisclosed. This is particularly crucial in use-cases with repeated auctions in which knowledge
of the bids in the previous auctions can a"ect the bidders’ strategies. Formally, the information gained by
any observer, whether a participant in the protocol or not, should precisely consist of the winning bid and its
bidder and nothing more.

Given that we work in a blockchain setting, there are two natural and distinct measures of performance:
(i) running time, i.e. the number of blocks required for the auction to terminate, and (ii) gas usage, i.e. the
computation cost paid as transaction fees by each bidder. Previous methods either leak everyone’s bids (publicly
or to a centralized auctioneer) or have prohibitive time complexity or gas usage. For example, a classical
commit-reveal scheme runs in 𝑃 (1) time and costs 𝑃 (1) gas per bidder, but leaks everyone’s bids publicly. A
naïve Dutch auction achieves 𝑃 (1) gas usage per bidder, while requiring an untenable ω(𝑂) time. It keeps
losing bids con!dential, but fails to ensure that bidders have no information about others’ bids when making
their own. On the other hand, non-blockchain auction protocols and those based on multi-party computation
do not distinguish between time and gas, leading to a prohibitive gas usage of ω(𝐿) for each bidder.

In this work, we present a novel yet simple protocol for private sealed-bid auctions on the blockchain. Our
protocol is decentralized and trustless and provides the security guarantees mentioned above. It is also both
time- and gas-e#cient. Our approach takes 𝑃 (log𝑂) time and costs 𝑃 (log𝑂) units of gas for each bidder. It
also guarantees observational determinism with respect to all losing bids.

1 Introduction and Related Works
Designing decentralized auction protocols is a classical and well-studied topic in distributed systems
and especially in the context of blockchain [1, 4, 23]. In this work, we consider the problem of
implementing a sealed-bid !rst-price auction as a smart contract on a programmable blockchain
such as Ethereum or Cardano. Our goal is to design a protocol that is both fast, in terms of number
of blocks needed to execute it, and gas-e#cient, having a small cost for each participating bidder.
We also aim to provide privacy guarantees to non-winning participants ensuring that their bids
remain private and only the highest bid/bidder is revealed.
T!"#$%"!&#’ A()’*+#$. An auction protocol is called transparent if every participant’s bid is
publicly revealed by the end of the protocol. A common approach in transparent auctions is the
commit-reveal scheme, as implemented in several smart contract-based protocols such as [36]. In
these schemes, bidders !rst commit to their bids and then reveal them during a designated phase.
Although this method ensures trustless execution, it ultimately exposes all bid values, o"ering no
bid privacy. Unlike traditional commit-reveal auctions, we aim to ensure privacy for the losing
bidders, i.e. guarantee that no information is leaked about their bids.
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A#+#,-+($ A()’*+#$. An auction protocol is anonymous if it leaks the bids but no one can
infer their ownership and know which bid belongs to which bidder. Two prominent directions in
designing anonymous auctions are based on ring signatures and blind signatures.
R*#. S*.#"’(!&$. A ring signature is a cryptographic primitive that allows any member of a
group to sign a message anonymously, making it infeasible to determine which member produced
the signature. It has been proposed for building anonymous auction systems where the bid values
can be seen by everyone after the auction ends but they are not tied to someone’s identity. For ex-
ample, [46] employs ring signatures in a blockchain setting to achieve bidder anonymity. However,
the approach is not fully trustless since the auctioneer may later deanonymize the bidders. Simi-
larly, [20] implements an anonymous !rst-price sealed-bid auction using ring signatures, relying on
a centralized auctioneer with the potential to compromise anonymity. In [39], ring signatures are
used to protect bid con!dentiality and bidder identity, yet the auctioneer still retains the capability
to reveal bid values.
B/*#0 S*.#"’(!&$. Blind signatures [9] are digital signatures in which the message is !rst
“blinded” so that the signer cannot see its content, ensuring that the signature cannot later be linked
back to the original message. This method is used in [44], where blind signatures combined with
time-lock encryption decouple bid values from bidder identities. Although the bid values become
publicly veri!able after the auction ends, they are not tied to individual bidders.
P!*1"’& A()’*+#$. We say an auction is private if it does not leak any information about the
losing bids. See Section 2 for a formal de!nition. Most private auctions in the literature are based
on either homomorphic encryption or multiparty computation protocols. They are not designed
for the blockchain setting and often require costly computations that, if implemented in a smart
contract, would lead to an untenable gas usage of ω(𝐿) per participant, where 𝐿 is the number of
bidders.
H+-+-+!%2*) E#)!,%’*+#. Homomorphic encryption is a cryptographic tool that allows users
to compute directly on encrypted data without having to decrypt it !rst. It naturally !ts well in
auction protocols, as bidders may securely perform calculations on their encrypted bids [3, 25].
For example, a Pedersen commitment [35], which is a type of homomorphic commitment scheme,
is deployed in [42] and [17]. In the Riggs protocol [42], each bidder has a balance (commitment)
recorded in the auction house, which represents the total amount each bidder may use to place bids
in the auctions being hosted. A Pedersen commitment is particularly useful in this case as bidders
can directly update their balances or place a bid without revealing the amounts.
M(/’*%"!’, C+-%(’"’*+#. Many auction protocols such as [16, 28, 32, 45, 49] utilize secure
multiparty computation to secretly compute the result of an auction while keeping the bids private.
For example, Cryptobazaar [32] is a protocol that runs in 𝑃 (𝐿) time and can be generalized to an
𝑀th-price auction that discloses only the 𝑀th highest bid and nothing else. It uses the Anonymous
Veto protocol of [19] to blind the bids from the auctioneer and everyone else.
F(!’2&! R&/"’&0W+!3$. Several works have examined transparent auctions on blockchain
platforms. In transparent auctions, bidders and bid values are publicly known. For instance, [27,
36, 41] explore English, Dutch, and sealed-bid auctions and challenges such as front-running,
collusion, and ine#ciencies in bid revelation. Other studies provide comprehensive overviews of
blockchain-based auction approaches [41], practical implementation insights [33], and discussions
on protocols that rely on broadcast or multiparty channels [11, 31]. Additional research has focused
on optimizing sealed-bid auctions for liveness [21], or developing collusion-resistant systems [43].
O(! C+#’!*4(’*+#.We provide a novel and simple auction protocol that can be implemented
as a smart contract and combines ideas from Dutch auctions, commit-reveal schemes and binary
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interval trees. Our protocol takes 𝑃 (lg𝑂) time where𝑂 is the maximum allowed bid. Similarly,
every bidder in the protocol pays for 𝑃 (lg𝑂) units of gas in the worst case. Our protocol is
decentralized, premissionless, and trustless. It also guarantees both bid independence, i.e. every
bidder is unaware of others’ bids when making their own, and privacy for losing bidders, ensuring
that only the highest bid and its corresponding bidder are publicly identi!ed. Finally, we guarantee
that the results are publicly veri!able.

O!."#*5"’*+#. Section 2 explains our setting and formalizes the problem. This is then followed
by our protocols. In Section 3 we start with a simple combination of commitment schemes and
Dutch auctions which provides the desired privacy guarantees and requires ε(𝑂) time but only
𝑃 (1) gas for each bidder. In Section 4, we introduce the binary auction tree data structure and use it
to design a protocol with 𝑃 (lg𝑂) time and 𝑃 (lg𝑂) gas cost for each bidder. This is followed by
an extension in Section 5 which ensures the binary auction tree does not leak information about
non-winning bids.

2 Preliminaries and Problem Statement
In this section, we !rst outline our setting and assumptions about the blockchain and smart contract
environment. These are standard assumptions and can be skipped by readers who are already
familiar with this setting. We then de!ne our auction problem and the desired security guarantees.

P!+.!"--"4/& B/+)3)2"*#. Our goal is to design a protocol that can be implemented as a
smart contract on common programmable blockchains such as Ethereum [5] or Cardano [7, 29].
Our protocol shall not be limited to a particular architecture such as the accounting model of
Ethereum or the extended UTXO employed by Cardano. Thus, in our setting, a smart contract is
simply an immutable program which can own and transfer money and has functions that can be
called by anyone on the network. The underlying blockchain layer ensures that all users reach a
consensus on the sequence of function calls and thus the state of the smart contract. We consider
the consensus layer as a black box and do not analyze its details, e.g. whether it uses proof-of-work
or proof-of-stake. All participants have access to the same consensus and can see the state of
the blockchain and smart contracts. The transactions are divided into a number of blocks, each
corresponding to a particular time period. If several transactions are made during a single block’s
time period, their order in the block is non-deterministic and arbitrary. We also assume that there is
no limit on the number of transactions per block and no transactions are “dropped” by the miners.
In other words, all valid transactions reach the smart contract. In practice, this can be ensured
by allowing several blocks’ time for each transaction to be mined, i.e. scaling up the time limits
by a constant factor. We assume that the smart contract has access to block numbers. Finally, the
runtime of a protocol is the number of blocks from its inception to completion.

G"$. In Bitcoin, every transaction includes a fee that is paid to the miner who adds it to the
consensus chain [30]. In programmable blockchains, the same mechanism is also used to avoid
denial-of-service attacks. Every transaction added to a block in the consensus chain has to be
executed by everyone on the network. Thus, the transaction’s originator, i.e. the person calling
the function, has to pay a transaction fee which is proportional to the computational resources it
uses. This payment will dissuade users from invoking costly executions that may clog the network.
The execution cost is called gas and is usually obtained by a !xed formula that assigns costs to
every atomic operation in the smart contract. This is hard-coded in the blockchain protocol. For
example, in Ethereum, the beigepaper contains a table of gas costs [14]. Gas fees are signi!cant and
cost Ethereum users almost 4 billion USD per year [15]. Thus, when designing a blockchain-based
protocol, we must distinguish between o"-chain computation, i.e. computation done on the user’s
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own machine which does not incur gas costs, and on-chain computations, i.e. calls to smart contract
functions which cause computations performed by everyone on the network and do incur gas fees.
D&%+$*’$. Distributed auction protocols often include mechanisms to detect cheating by partic-
ipants. In a blockchain setting, smart contracts can receive and own money in the form of an
underlying cryptocurrency. Thus, we can additionally assume that the participants are required
to sign up with the smart contract and pay a deposit to take part in the protocol. This way, any
detection of dishonest behavior can immediately be punished by con!scating their deposits.
I0&#’*’*&$. Blockchain environments use asymmetric cryptography and identify users by their
public keys. All transactions, including all function calls to smart contracts, have to be signed by the
originator. The environment is pseudonymous in the sense that a user can create as many identities
as they wish by simply generating more secret/public key pairs. We will exploit this property in
our protocol, where users can generate a new identity to send a message to the smart contract
without it being connected to their previous identity. In practice, users can have many identities
before taking part in the protocol and can use mixing services to fund all of their accounts (public
keys) without disclosing their connection to the same person [2, 34].
B*00&!$. We consider an auction with 𝐿 bidders numbered from 1 to 𝐿. We use pk𝐿 to denote the
public key (identity) of the 𝑀-th bidder and sk𝐿 to denote its corresponding secret key. Naturally, pk𝐿
is public knowledge whereas sk𝐿 is only known to 𝑀 .
A()’*+# P!+4/&- S’"’&-&#’. Our goal is to design a sealed-bid auction that can be imple-
mented as a smart contract. Each bidder 𝑀 should be able to place a bid 𝑁𝐿 by an interaction with
the auction smart contract. We assume there is a known global maximum bid 𝑂 and every 𝑁𝐿
is between 1 and𝑂. The contract should then obtain the maximum bid (max𝐿 𝑁𝐿 ) and its bidder
(argmax𝐿 𝑁𝐿 )†. These values must be obtained in a publicly-veri!able manner, i.e. anyone with
access to the blockchain should be able to verify that the auction has completed successfully and
the highest bid/bidder are identi!ed correctly.
S&)(!*’, G("!"#’&&$.We require our auction to satisfy the following security properties. The
!rst three are classical and can be obtained even by the simplest commit-reveal schemes. Thus, we
will mainly focus on the fourth property below:

(1) Decentralization and Permissionlessness. Anyone on the blockchain network can sign
up to take part in the auction and no party has permissions to perform operations that are
not allowed to any other party.

(2) Trustlessness. No party is assumed to be honest. If a party is not following the protocol
correctly, this should be identi!ed and punished.

(3) Bid Independence. No bidder should be able to change their own bid after learning any
information about other bids. This is also called the sealed-bid property.

(4) Privacy for Losing Bidders. If a bidder 𝑀 is not the highest bidder, then no information
should be leaked about 𝑁𝐿 . Note that this property is violated even if 𝑁𝐿 or some information
about 𝑁𝐿 is leaked without it being directly connected to 𝑀 . For example, if an observer realizes
that one of the bids was a particular value, without knowing who the bid belonged to, we
still consider this a breach of privacy.

O4$&!1"’*+#"/ D&’&!-*#*$-.We formalize the fourth property (privacy for losing bidders)
above using the notion of observational determinism which is standard in the computer security
literature and often used in the context of concurrent programs [12, 22, 26, 37, 47]. Let 𝑄 be an

†If the sequences have several maximal elements, we assume that argmax returns the set of indices in which the
maximum value appears. The protocols are explained as if the auction’s winner is unique, but it is trivial to extend them to
cases with several winners.
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observer, i.e. a user with access to the blockchain network whomay or may not be one of the bidders.
In one run of the protocol, the observation made by 𝑄 is the sequence of all transactions and blocks 𝑄
sees on the blockchain network, which may originate from any participant or miner, together with
the timestamps at which they see such transactions/blocks. We denote one such observation with 𝑅 .
Let 𝑆 = ↑𝑁1,𝑁2, . . . ,𝑁𝑀↓ be the sequence of bids. We say 𝑅 is consistent with 𝑆 from 𝑄 ’s point-of-view
and write 𝑆 |=𝑁 𝑅 if it is possible that 𝑄 observes 𝑅 when the bidders’ bids are according to 𝑆.
Intuitively, if 𝑆 |=𝑁 𝑅 and 𝑆↔ |=𝑁 𝑅, when 𝑄 observes 𝑅 they cannot distinguish whether the bids were
according to 𝑆 or 𝑆↔. We say two bid sequences 𝑆 = ↑𝑁1,𝑁2, . . . ,𝑁𝑀↓ and 𝑆↔ = ↑𝑁 ↔1,𝑁 ↔2, . . . ,𝑁 ↔𝑀↓ are
compatible and write 𝑆 ↭ 𝑆↔ if max𝐿 𝑁𝐿 = max𝐿 𝑁 ↔𝐿 and argmax𝐿 𝑁𝐿 = argmax𝐿 𝑁 ↔𝐿 .

Based on the de!nitions above, a protocol provides privacy for losing bidders if we have:
• For every observer 𝑄 who is not a bidder, if an observation 𝑅 is consistent with 𝑆, then it is
consistent with any 𝑆↔ that is compatible with 𝑆. Formally,

↗𝑅 ↗𝑆 ↗𝑆↔ (
𝑆 |=𝑁 𝑅 ↘ 𝑆 ↭ 𝑆↔) ≃ 𝑆↔ |=𝑁 𝑅 .

• The same property should hold for every bidder 𝑄 except that the bidder knows their own bid
𝑁 𝑁 . Thus, if 𝑄 is a bidder and an observation 𝑅 is consistent with 𝑆 from their point-of-view,
then it should be consistent with any 𝑆↔ ↭ 𝑆 as long as 𝑁 ↔𝑁 = 𝑁 𝑁 . Formally,

↗𝑅 ↗𝑆 = ↑𝑁1,𝑁2, . . . ,𝑁𝑀↓ ↗𝑆↔ = ↑𝑁 ↔1,𝑁 ↔2, . . . ,𝑁 ↔𝑀↓(
𝑁 𝑁 = 𝑁 ↔𝑁 ↘ 𝑆 |=𝑁 𝑅 ↘ 𝑆 ↭ 𝑆↔

)
≃ 𝑆↔ |=𝑁 𝑅 .

A bidder might take part in the auction with several identities and make several bids. In such
cases, we should extend the de!nition above accordingly to require that the observations
match on all bids made by the same person. This also models collusions between bidders.

The formal de!nition above precisely captures our desired privacy concept. Every observer or
colluding set of observers would only be able to distinguish between 𝑆 and 𝑆↔ if they can do so
using their own bid(s) and the information about the maximum bid/bidder. Thus, the observation
does not leak any information about the losing bids/bidders.
E66*)*&#), M&’!*)$. To analyze the e#ciency of our protocol, we consider the runtime and
the maximum gas usage of any bidder. Recall that the runtime is the number of blocks required to
execute the protocol. This is not the same as our protocol’s computational complexity, given that a
single block may contain several transactions/function calls. On the other hand, the gas usage is a
closer concept to computational complexity. When a user invokes a function with computational
complexity 𝑇 , it will cost them ε(𝑇 ) in gas. Given that smart contract functions can be called by
di"erent users, this cost might be divided among them based on the protocol’s requirements. We
consider the maximum cost paid by a single user/bidder.

3 A Dutch Auction with Commitments
Our !rst protocol is a combination of classical commitment-scheme auctions and Dutch auctions.
It provides excellent e#ciency in terms of gas, requiring only 𝑃 (1) gas usage for each bidder.
Note that this is asymptotically optimal since each bidder must at least sign up with the protocol.
However, it requires ε(𝑂) time where𝑂 is the maximum possible bid.
P!+’+)+/ 0. D(’)2 A()’*+#. In a Dutch auction, an auctioneer starts with a high asking price
𝑂 and keeps lowering the price until one of the bidders agrees to pay it [13]. This kind of auction
originates in Dutch $ower markets and can be easily implemented as a smart contact consisting of
the following steps:
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Fig. 1. Timeline of function calls by a winning bidder 𝑀 and a losing bidder 𝑄 to the auction smart contract in
Protocol 1. In this figure, Step (1) ends at block number 𝑈 and Step (2) spans blocks 𝑈 + 1 to 𝑈 +𝑂. Red values
are private computations made by the bidders on their own machines.

(0) Parameter Setup. The organizer deploys the auction on the blockchain and chooses the
deadlines, in terms of block numbers, for each of the following steps. For each step 𝑀, the
organizer !xes two block numbers [𝑉𝐿 , 𝑉 ↔𝐿 ] and the contract accepts function calls of step 𝑀
only in this period. The organizer also sets a parameter 𝑊, which is the deposit each bidder
must pay to join the auction and𝑂 which is the maximum allowed bid. This step is the same
for all of our future auction protocols and thus we omit it for brevity. Some protocols need
additional parameters whose values will also be set in this step.

(1) Registration. Anyone on the blockchain network can call a !"#$%&"!() function in this step,
paying a deposit 𝑊 . The contract keeps track of the public key pk𝐿 of every registering bidder.

(2) Countdown. This step lasts for exactly𝑂 blocks. Throughout this step, any registered bidder
can call a function ’$(() in the contract. The bidder does not need to provide the value of
their bid. In the 𝑋-th of the𝑂 blocks, the contract only accepts bids of value 𝑁𝐿 =𝑂 ⇐ 𝑋 + 1.
Thus, the time of the bid uniquely determines its value∗. The auction concludes as soon as
a bid is made. The !rst bid is automatically the highest bid and its bidder is the auction’s
winner.

(3) Refund. In this step, all bidders can call a !")*+(() function to receive their deposit 𝑊 back.
Based on the particular use-case, the winner might be excluded.

Although the simple protocol above provides privacy for losing bidders, whose bids are never
revealed, it does not guarantee bid independence. Indeed, when at time 𝑋 the highest bidder 𝑀
decides to bid 𝑁𝐿 =𝑂 ⇐ 𝑋 + 1, this is done with the knowledge that no one else’s bid is higher than
the value 𝑁𝐿 . This violates bid independence. For example, a bidder who intends to bid 100 USD for
a batch of Dutch $owers might change their bid to 95 USD when they realize that no one else has
bid 101 USD or more. To !x this, we combine the classical commit-reveal auction model with the
above protocol.
P!+’+)+/ 1. D(’)2A()’*+#7*’2C+--*’-&#’$.Our new protocol consists of the following
steps:

∗To avoid issues due to network latency, one can set a longer period of several blocks for each bid value, thus scaling
the time by a constant factor.
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(1) Registration and Commitment. Anyone on the blockchain network can register. To do
so, they must !rst commit to their bid 𝑁𝐿 . They choose a random nonce 𝐿𝐿 and compute
𝑌𝐿 = ,-%,(𝑁𝐿 ,𝐿𝐿 ). Here, ,-%, is a cryptographic hash function. They then call !"#$%&"!(𝑌𝐿 )
and pay a deposit 𝑊 . The contract saves the registrant’s public key pk𝐿 and their declared
hash 𝑌𝐿 .

(2) Countdown. This step lasts for exactly 𝑂 blocks and is similar to the previous protocol.
Throughout this step, any registered bidder 𝑀 can call a function ’$((𝐿𝐿 ) in the contract. The
bidder does not need to provide the value of their bid, but only their random nonce 𝐿𝐿 . In the
𝑋-th of the𝑂 blocks, the contract only accepts bids of value 𝑁𝐿 =𝑂 ⇐ 𝑋 + 1. When ’$((𝐿𝐿 )
is called by bidder 𝑀, the contract veri!es that 𝑌𝐿 = ,-%,(𝑁𝐿 ,𝐿𝐿 ). If not, the bidder will be
penalized and the function call ignored. As before, the !rst bid that passes the hash check is
automatically the highest bid.

(3) Refund. In this step, each bidder 𝑄 can call a function !")*+((𝑍 𝑁 ) to receive their deposit
𝑊 back. The winner might be excluded based on the use-case. Moreover, any non-winning
bidder must provide a proof 𝑍 𝑁 showing that their bid 𝑁 𝑁 was smaller than the winning bid
𝑁𝐿 . For this, one does not need to publish the nonce 𝐿 𝑁 and can use any standard zkSNARK
such as Groth16 [18] instead. More speci!cally, 𝑍 𝑁 is a proof that 𝑄 knows values 𝐿 𝑁 and 𝑁 𝑁

such that 𝑁 𝑁 < 𝑁𝐿 and ,-%,(𝑁 𝑁 ,𝐿 𝑁 ) = 𝑌 𝑁 . The contract veri!es 𝑍 𝑁 and issues the refund only
if 𝑍 𝑁 is valid. Otherwise, the bidder’s deposit will be burned.

E66*)*&#),. Our protocol above has the same runtime and gas usage as a vanilla Dutch auction.
The time is dominated by the countdown which takes ε(𝑂) blocks in the worst case. On the other
hand, each bidder pays only𝑃 (1) in gas, since they have to send a single constant-sized registration
transaction in Step (1), followed by a single bid in Step (2) only if they are the winner, and a single
refund transaction in Step (3) if they are not the winner, which veri!es a constant-sized zkSNARK
with constant gas usage.

S&)(!*’, A#"/,$*$. Public veri!ability is immediate since the contract veri!es everything and
anyone on the blockchain network can simply run it, too. Decentralization and trustlessness are
easy to check. Bid independence is achieved since every bidder commits to their bid in Step (1) and
thus cannot change it later. At this point, they have no information about other bids. Privacy for
losing bidders is obtained by design since no losing bid is revealed in Steps (2) and (3) and each
losing bidder simply provides a zkSNARK certifying they have not won the auction.

4 Binary Auction Trees
While Protocol 1 of the previous section has all the desired security properties, it takes ε(𝑂) blocks
to execute. This is prohibitively large for real-world auctions. For example, if we have an auction in
which𝑂 = 106 and each block takes 13 seconds, as it does on Ethereum, then the countdown step
would require almost 150 days. In this section, we provide a protocol that improves the runtime to
ε(log𝑂) blocks, albeit at a slightly increased cost of ε(log𝑂) gas for a bidder in the worst case.

B*#"!, A()’*+# T!&&. The idea is to use a binary interval tree of possible bids, which we call a
binary auction tree (BAT). The root of a BAT corresponds to the interval [1,𝑂] . Each vertex 𝑎 of
the tree that is labeled by the interval [𝑋,𝑏] will have two children, the left one corresponding to[
𝑋, ⇒ 𝑂+𝑃2 ⇑

]
and the right being labeled by the interval

[
⇒ 𝑂+𝑃2 ⇑ + 1,𝑏

]
. Each leaf will correspond to

a single possible bid value, i.e. an interval [𝑋, 𝑋]. For example, Figure 2 shows the BAT for𝑂 = 15.
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Fig. 2. A Binary Auction Tree (BAT) in which𝑂 = 15 and the path taken if the maximum bid is 12. The red
edges correspond to explicit calls to !"#$%() and the blue edge is an implicit move to the le" child.

I#’(*’*+#. In our second protocol, the smart contract starts at the root of the BAT and keeps
traversing it down until it reaches a leaf. At each level of the tree, the bidders must collectively
guide the contract towards the highest bid. Since each bidder knows their own bid, they should send
a message to the contract if their bid is in the right child of the current node. If the contract does not
receive any such message by a particular deadline, it moves to the left child. Otherwise, it moves to
the right child. This continues until the contract !nds the maximum bid. The actual protocol is a
bit more involved as (i) a smart contract can change states only when one of its functions is called,
i.e. it cannot automatically invoke itself, and (ii) we need to penalize dishonest bidders.

P!+’+)+/ 2. A()’*+# ($*#. " BAT. Our protocol consists of the following steps:

(1) Registration and Commitment. Same as in Protocol 1.
(2) Path Finding. Suppose the BAT has depth 𝑐, i.e. the distance from the root to the farthest

leaf is 𝑐 edges. This step will take exactly 𝑐 blocks time. If the previous step ends at block
number 𝑈, then the current step runs from block 𝑈 + 1 to 𝑈 +𝑐†. The smart contract implicitly
keeps track of its position in the BAT by saving the interval corresponding to the current
node, as well the number of steps taken so far. In the time period of block 𝑈 + 𝑑, if the smart
contract is in a non-leaf vertex with corresponding interval [𝑋,𝑏], then in the next step it
should go to either the left child

[
𝑋, ⇒ 𝑂+𝑃2 ⇑

]
or the right child

[
⇒ 𝑂+𝑃2 ⇑ + 1,𝑏⇑

]
. If a bidder

𝑀 realizes that their bid 𝑁𝐿 belongs to the right child, i.e. ⇒ 𝑂+𝑃2 ⇑ + 1 → 𝑁𝐿 → 𝑏, they should
call the function !$#,&() of the smart contract. This call tells the contract to move to the
right child. Importantly, since we do not want bidder 𝑀 to publicly disclose that their bid 𝑁𝐿 is
in a particular interval, this call is not performed using the identity pk𝐿 that was used for
registering bidder 𝑀 in Step (1), but instead using several pseudonyms, i.e. di"erent identities
generated by the same bidder only for this call. The number of such pseudonymous calls
is randomly chosen by the caller. Moreover, every call to !$#,&() must have a deposit 𝑊 ↔

attached to it. The purpose of this deposit will soon become clear. If a !$#,&() transaction
is already issued by someone else in the current block, an honest bidder will not make the
calls at all. Otherwise, they will make at least 𝑒 calls to !$#,&(). 𝑒 is a parameter !xed in

†As in the previous protocols, one can scale this to several blocks for each edge.



Fast and Gas-e!icient Private Sealed-bid Auctions 9

Step (0). The contract will ignore repeated calls to !$#,&() in the same block and return their
deposits‡.
A further implementation detail in this step is that smart contracts cannot generally invoke
their own functions automatically. Thus, moving right is always by a function call from a
bidder, but moving left is implicit and is only performed when the next right move is called
or the time limit for Step (2) expires and a function in Step (3) is called. For example, a
pseudocode for !$#,&() is as follows:

step⇓ 0
𝑋 ⇓ 1
𝑏 ⇓𝑂
procedure !$#,&

𝑑 ⇓ block.number ⇐ 𝑈
while step < 𝑑 ⇐ 1 ↘ 𝑋 ω 𝑏 do 𝐿 Implicit left steps

𝑏 ⇓ ⇒ 𝑂+𝑃2 ⇑
step ⇓ step +1

if 𝑋 ω 𝑏 then 𝐿 Explicit right step
𝑋 ⇓ ⇒ 𝑂+𝑃2 ⇑ + 1
step ⇓ step +1

E8"-%/&. In Figure 2, if the highest bid is 12, then the highest bidder calls !$#,&() in the !rst
block of Step (2) moving to [9, 15]. This call is done using a di"erent identity (pseudonym)
than the one used for registration. There might be other calls to !$#,&() at this point, too,
but the contract will ignore repeated calls. Then, in the second block of Step (2), no one calls
!$#,&(). Thus, all bidders realize that the contract has implicitly moved to [9, 12] but this
change is not yet executed in the contract. In the third block, the highest bidder calls !$#,&()
again. At this point, the contract !rst performs the left move from the last block, going to
[9, 12] and then the current right move going to [11, 12] . Finally, in the fourth block, the
highest bidder calls !$#,&() and the contract ends up in leaf 12.

(3) Revealing the Highest Bid. At the end of the previous step, we reach a leaf of the tree that
corresponds to a particular bid value 𝑁𝐿 belonging to a bidder 𝑀 . In this step, the winner 𝑀 must
call ’$((𝐿𝐿 ) using their original identity pk𝐿 and provide their nonce𝐿𝐿 . The contract !rst takes
any remaining implicit left steps to !nd the value 𝑁𝐿 , and then checks that ,-%,(𝑁𝐿 ,𝐿𝐿 ) = 𝑌𝐿 .
If no bidder calls ’$((𝐿𝐿 ) successfully within the time limit of this step, then the last person
to call !$#,&() has been dishonest. In this case, anyone can call a function named ’.-/"().
The contract then con!scates the deposit 𝑊 ↔ of the last person who moved !$#,&(), goes back
to immediately after the second-last call to !$#,&(), or the root if no such call exists, and
redoes Step (2) to !nd a new leaf.

(4) Refund. This step is exactly the same as in Protocol 1. Each bidder 𝑄 can call a function
!")*+((𝑍 𝑁 ) to receive their deposit 𝑊 back. Every non-winning bidder must provide a
zkSNARK proof 𝑍 𝑁 showing that their bid𝑁 𝑁 was smaller than the winning bid𝑁𝐿 . Additionally,
all 𝑊 ↔ deposits for moving right can be refunded.

E66*)*&#),. In this protocol, anyone can take part in guiding the contract through the binary
auction tree. This is because we want to allow the bidders to use pseudonyms, i.e. identities other
than the ones used in the registration phase, to guide the path. This does not a"ect our runtime.
Note that spurious calls to !$#,&() are disincentivized. If they cause the contract to exceed the

‡In practice, the preferred design is to include the interval [𝑂, 𝑃 ] as a parameter and call !$#,&( [𝑂, 𝑃 ]) to avoid attacks
that reuse stale function call transactions.
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actual maximum bid, then they will be punished since each move to the right requires a deposit
𝑊 ↔. If they do not exceed the maximum bid, they have no e"ect on the correct execution of the
protocol. Thus, in the presence of rational parties, we can analyze the runtime and gas usage with
the assumption that we have no such dishonest calls. In this case, the runtime bottleneck is Step (2)
which requires 𝑐 = ε(log𝑂) blocks. Moreover, each bidder has to pay for gas used in one function
call for registration, at most 𝑐 calls to !$#,&() in Step (2) and then at most one call in each of
Steps (3) and (4). Each call uses constant gas. Thus, the worst-case gas usage of a bidder is ε(log𝑂).
F(!’2&! I#)&#’*1&$. In the protocol above, the highest bidder is incentivized to correctly guide
the contract to the leaf corresponding to their bid. Otherwise, they will lose their initial deposit 𝑊 .
However, at each step of the path, the protocol requires an honest bidder who wants to go right
to submit not just one, but several calls to !$#,&() from di"erent identities. To incentivize this,
we can edit the smart contract to remember the !rst 𝑒 calls to !$#,&() at each step and later pay
a !xed reward to each of them. The reward will be taken from the bidders’ initial deposits and
its amount, as well as 𝑒 , are parameters set in Step (0). This way, if several bidders know that we
should go right at a particular step, they will compete on sending the information to the contract
as soon as possible by creating many calls to !$#,&()§.
S&)(!*’, A#"/,$*$. Public veri!ability, decentralization, trustlessness and bid independence are
achieved by arguments similar to the case of Protocol 1. Thus, we focus on analyzing privacy for
losing bidders. Let 𝑄 be a losing bidder. Given that 𝑄 has signed up in the contract using the identity
pk𝑁 but made calls to !$#,&() by di"erent identities, no one can observe anything about 𝑁 𝑁 that is
connected back to 𝑄 . This guarantee is su#cient for many real-world use-cases but is weaker than
the formalism using observational determinism provided in Section 2. Indeed, this formalism is not
satis!ed by Protocol 2. As an example, consider the BAT in Figure 2 and suppose the highest bidder
𝑀 is bidding 𝑁𝐿 = 12. Suppose 𝑄 is the second-highest bidder and 𝑁 𝑁 = 10. In the !rst step, 𝑀 plans to
call !$#,&() but observes that someone else calls !$#,&() !rst. This tells 𝑀 that there is at least one
other bid in the range [9, 15] . Although the identity of 𝑄 is kept secret, the information that the
second highest bid is also in [9, 15] is enough to violate our strict privacy requirement. Of course,
when 𝑀 wins the auction, they will know that the second highest bid is in [9, 12] .

5 Fake Bids and Observational Determinism
While our Protocol 2 does not satisfy observational determinism as de!ned in Section 2, it comes
quite close to it. There is no link between the right moves on the tree and the original identities of
the bidders. Additionally, any leaked information is only about the second-highest bid. Intuitively,
if the highest bidder plans to move right at some point but observes that someone else made the
move !rst, they will know that the second-highest bid is in the right subtree, too. However, such an
observation can be made irrespective of the other bids and thus does not leak any information about
them. From the point-of-view of anyone other than the highest bidder, observational determinism
is already satis!ed. If an observer 𝑄 who is not the highest bidder observes several calls to !$#,&()
at a particular block, they cannot know if the calls originated from the same person who is using
several pseudonyms or a number of di"erent people. This was the reason behind issuing each
!$#,&() calls many times. Thus, they only gain information about the highest bid, which is not a
violation of our privacy requirements.
P!+’+)+/ 3. A()’*+# ($*#. " BAT "#0 F"3& B*0$. To provide privacy for the second-highest
bidder and ensure the desired observational determinism from the point-of-view of the highest

§Another implementation detail is that !$#,&() should not allow itself to be called from any other smart contract.
Thus, every call to !$#,&() is in a separate transaction.
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bidder, we simply allow 𝑇 of the bidders to each make an additional fake bid. 𝑇 is a parameter set
in Step (0). Speci!cally, our Protocol 3 has the following steps:
(1) Registration and Commitment. Same as in Protocols 1 and 2.

(2.1) Selecting Fake Bidders. 𝑇 of the 𝐿 bidders are selected randomly to be fake bidders. To
choose the fake bidders, the smart contract relies on the output of a blockchain-based random
number generator such as Randao [48]. Random number generation is a well-studied topic in
blockchain and there are many e#cient, tamper-proof and secure solutions available [8, 38].
Speci!cally, if the output of the RNG service in the previous block is 𝑓 and !-+( is a pseudo-
random number generator, then 𝑓 is chosen as the seed and !-+( is called 𝑇 times to choose
the 𝑇 fake bidders. In implementation, !-+( can be instantiated to any cryptographic hash
function.

(2.2) Computing Fake Bids. If a bidder 𝑀 is chosen as a fake bidder, they !rst generate a fake bid

𝑁 ↔𝐿 = (!-+((𝑓,𝐿𝐿 ) mod 𝑂) + 1. (1)

Note that the fake bid is uniformly distributed and depends on the RNG output 𝑓 and the
bidder’s nonce 𝐿𝐿 . They then take part in the protocol with both original and fake bids, i.e. 𝑁𝐿
and 𝑁 ↔𝐿 .

(2.3) Path Finding. This step is exactly the same as Step (2) of Protocol 2, except that the fake
bidders call !$#,&() whenever either of their two bids is in the right subtree.

(3) Revealing the Highest Bid. At the end of the path-6!nding step, we reach a leaf of the tree.
If the leaf corresponds to a real bid 𝑁𝐿 , then the bidder 𝑀 must call ’$((𝐿𝐿 ). The contract veri!es
this as in the previous protocol. Otherwise, if no such bid is declared, the leaf corresponds to
a fake bid 𝑁 ↔𝐿 . In this case, the fake bidder 𝑀 must call )-0"’$((𝑍 ↔

𝐿 ) and provide a zkSNARK 𝑍 ↔
𝐿

proving that their fake bid 𝑁 ↔𝐿 is indeed the leaf we have ended up in. Given that 𝑓 is public
knowledge, 𝑍 ↔

𝐿 will simply be a proof that 𝑀 knows a value 𝐿𝐿 which satis!es equation (1).
(4) Veri!cation of Fake Bids. Every fake bidder 𝑄 must call )-0"’$((𝑁 ↔𝑁 , 𝑍 ↔

𝑁 ), providing their
fake bid 𝑁 ↔𝑁 and a zkSNARK proof that it was computed according to equation (1). If 𝑁 ↔𝑁 is
larger than the leaf reached in Step (3) or 𝑍 ↔

𝑁 is invalid or not provided, the contract con!scates
the deposit of 𝑄 and disallows them from continuing to participate in the auction.

(5) Refund or Reset. At this step, anyone who has paid a deposit to call !$#,&() can take the
deposit back. If the leaf identi!ed in Step (3) corresponds to a real bid, then the refund step
is triggered, which works exactly as in Protocol 2, i.e. every non-winning bidder 𝑄 can call
!")*+((𝑍 𝑁 ), providing a zkSNARK 𝑍 𝑁 proving that their bid was smaller than the maximum
bid 𝑁𝐿 identi!ed in Step (3) and receiving their deposit back. However, if the leaf identi!ed
in Step (3) corresponds to a fake bid, i.e. if the maximum bid 𝑁 ↔𝐿 is fake, the smart contract
sets𝑂 ⇓ 𝑁 ↔𝐿 ⇐ 1, goes back to Step (2.1) and performs a new walk from the root of the binary
auction tree to a leaf.

E66*)*&#),. The runtime and gas usage of Protocol 3 are similar to Protocol 2, except that the root-
to-leaf walks on the BAT may be repeated several times. Speci!cally, suppose𝑂 is the maximum
allowed bid and 𝑁𝐿 is the largest bid.𝑂 decreases in each round, but we ignore this for ease of
analysis. The probability that no fake bids surpass 𝑁𝐿 is at least (𝑁𝐿/𝑂) 𝑄 . Thus, the expected number
of times the protocol has to traverse a root-to-leaf path is less than (𝑂/𝑁𝐿 ) 𝑄 . Therefore, the expected
runtime of the protocol and the expected gas usage per bidder are both in 𝑃

(
(𝑂/𝑁𝐿 ) 𝑄 · log𝑂

)
.

If both 𝑇 and𝑂/𝑁𝐿 are small constants, i.e. only a few fake bids are allowed and the maximum
allowed bid𝑂 is chosen reasonably so that it does not exceed the real maximum bid by more than a
constant factor, then the asymptotic performance matches that of Protocol 2, i.e. 𝑃 (log𝑂) runtime
and 𝑃 (log𝑂) gas usage per bidder.
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S&)(!*’, A#"/,$*$.We only need to prove observational determinism since the other desired
properties are inherited from Protocol 2. We assume that the constant 𝑇 > 1 is chosen in a way that
no one person may control all 𝑇 fake bidders. In practice, since taking part in the protocol is costly
due to the deposit and gas payments, even a small 𝑇 su#ces. Consider an observer 𝑄 who makes an
observation 𝑅 during one root-to-leaf round of Protocol 3. 𝑅 may contain several pseudonymous
calls to !$#,&(). Since these calls are pseudonymous, 𝑄 is unable to connect any of them to another
bidder 𝑀 . Moreover, 𝑄 cannot obtain information about any of the bid values, except their own value
𝑁 𝑁 if they are a bidder. This is because 𝑄 cannot distinguish the calls to !$#,&() that are made due
to a real bid from those that are due to a fake bid. More speci!cally, if the round ends at a leaf that
is then revealed in Step (3) as a real bid 𝑁𝐿 with 𝑀 ω 𝑄, then it is possible that all the calls to !$#,&()
in the current path were invoked by 𝑀’s pseudonyms. Thus, from 𝑄 ’s perspective, the observation is
consistent with any bid sequence in which the maximum element is 𝑁𝐿 . Alternatively, if 𝑄 is the
maximum bidder and in Step (3) 𝑁 𝑁 is revealed as the maximum bid, then the observation 𝑅 is still
consistent with any bid sequence in which the maximum element is 𝑁 𝑁 . This is because there might
be a di"erent bidder 𝑀 whose fake bid is 𝑁 ↔𝐿 = 𝑁 𝑁 . This fake bidder would call !$#,&() according to
the same path as 𝑄 but will not reveal a real bid in Step (3). Finally, if the bid revealed in Step (3)
is fake, the exact same argument establishes observational determinism, i.e. the observation is
consistent with any sequence of bids whose maximum is less than the revealed fake bid of Step (3).

6 Conclusion
In this work, we presented a novel blockchain-based protocol for !rst-price sealed-bid auctions
that guarantees privacy for losing bidders, i.e. that their bids are not leaked as formalized by the
concept of observational determinism. Our protocol can be implemented as a smart contract on
any programmable blockchain and is e#cient in terms of both time and gas. It concludes within
𝑃 (log𝑂) blocks, where 𝑂 is the maximum allowed bid, and each bidder pays an expected gas
cost of 𝑃 (log𝑂) . A limitation of our approach is that observational determinism models non-
determinism in a system but does not consider probabilistic behavior or inference. Extending
the auction protocol with a stronger probabilistic security guarantee, such as those provided by
zero-knowledge protocols, is an interesting direction of future work.
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